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The detonation stability problem is studied by a normal mode approach which 
greatly simplifies the calculation of linear instability of detonation in contrast to the 
Laplace transform procedure used by Erpenbeck. The method of solution, for an 
arbitrary parameter set, is a shooting method which can be automated to generate 
easily the required information about instability. The condition on the perturbations 
applied a t  the end of the reaction zone is shown to be interpreted as either a 
boundedness condition or an acoustic radiation condition. Continuous and 
numerically exact neutral stability curves and boundaries are given as well as growth 
rates and eigenfunctions which are calculated for the first time. Our calculations 
include the Chapman-Jouguet (CJ) case which presents no special difficulty. We give 
representative results for our detonation model and summarize the one-dimensional 
stability behaviour in parameter space. Comparison with previous results for the 
neutral stability boundaries and approximations to the unstable discrete spectrum 
are given. Parametric studies of the unstable, discrete spectrum’s dependence on the 
activation energy and the overdrive factor are given with the implications for 
interpreting the physical mechanism of instability observed in experiments. This 
first paper is restricted to the case of one-dimensional linear instability. Extensions 
to transverse disturbances will be treated in a sequel. 

1. Introduction 
Detonation physics is a relatively new branch of combustion science that studies 

the mechanics and chemistry of compressible, reacting fluid flow. The detonation 
wave is a combustion-driven shock wave which can travel a t  enormous velocity 
(kilometres per second) and can generate enormous overpressures (tens to thousands 
of atmospheres). The simplest, physically relevant mathematical model of detonation 
is given by the reactive Euler’s equations, a set of hyperbolic partial differential 
equations in space and time that express the conservation of mass, momentum, 
energy and the rate of consumption of reactant within the fluid. 

Steady detonation structure is easily described, but the stability of detonations 
and the subsequent evolution of the instabilities are not. Detonation propagation in 
gas-filled tubes often exhibits a cellular, pulsating mode of propagation. The cellular 
propagation mode etches strikingly beautiful diamond-shaped patterns with 
characteristic dimensions, scribed by the triple points of the detonation shock 
impinging on the sidewalls of detonation tubes. Davis (Fickett & Davis 1979) has 
demonstrated the existence of cellular instability in a nitromethane and acetone 
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condensed phase explosive. This mode of propagation is only described as an 
extremely nonlinear process, however the regular features of the instability are 
readily identifiable. A central and poorly understood problem is how the structure 
and linear stability characteristics of the planar detonation relate to the spacing of 
the nonlinear propagation. Spacing and cell size characterizations found in routine 
experiments are used to estimate the thermochemistry of the reaction zone 
(Shepherd 1986). 

The linear stability problem of planar detonation requires extensive numerical 
treatment because the structure of the detonation wave, under sufficiently general 
modelling circumstances, generates ordinary differential equations with non- 
constant coefficients. A major goal of previous research has been to define the 
stability boundaries in a relevant parameter space. The most complete investigation 
of the neutral stability boundaries for the reactive Euler’s equations is due to 
Erpenbeck in the 1960s a t  Los Alamos (Erpenbeck 1962, 1964). (A complete set of 
references to Erpenbeck’s work is found in Fickett & Davis 1979.) In  his book with 
Fickett, in the section on stability, Davis constructed a diagram that summarizes the 
totality of Erpenbeck’s stability results in the appropriate parameter space : the heat 
of combustion, the wavenumber of disturbances transverse to the detonation shock 
and a chemical kinetics parameter for the chemical reaction behind the detonation 
shock. The diagram shown is poorly resolved and incomplete because the methods 
that Erpenbeck used (about which we will say more later) sampled parameter space 
and determined stability or instability pointwise. The stability boundaries were 
inferred by, sometimes, crude interpolation. It is fair to say that Erpenbeck’s method 
is hard to implement and it does not give a computationally direct way to determine 
the stability boundaries or the dispersion relation that defines the unstable modes. 
Erpenbeck’s results were largely limited to overdriven detonations because of 
analytical difficulties associated with the Chapman-Jouguet (CJ)  detonation case. 

Yet this diagram to date, has represented the best source of information about the 
boundaries of stability for detonation described by the reactive Euler’s equations. 
Modern analytical studies using asymptotic methods, such as those due to Majda & 
Rosales (1983), Buckmaster & Ludford (1988) and Buckmaster & Nevis (1988) have 
been handicapped in the physical interpretations of the various modes of instability 
by the lack of reliable, global information on linear stability characteristics with 
regard to parameter space. Indeed, with the exception of Erpenbeck and the present 
work, there are no exact treatments of the stability problem, all other treatments 
have been ad hoe, asymptotic or are based on a simplified model formulation (Fickett 
1985), or are without reaction zone structure. 

A common assumption is that the calculation of linear stability theory, properly 
interpreted, will lead to prediction of the preferred cell sizes observed in the nonlinear 
propagation phase. Recently, new analytical theories that  use asymptotics based on 
weak curvature of the detonation shock relative to the reaction zone thickness, have 
been developed by Bdzil & Stewart in a series of papers (Bdzil & Stewart 1986; 
Stewart & Bdzil 1988a, b ) .  This theory is called ‘Detonation Shock Dynamics’ after 
Whitham’s analogous theory for shocks and calculates multidimensional steady 
detonation wave propagation and temporal evolution of the near CJ detonation. In  
particular they show that the multi-dimensional detonation shock propagates along 
its normal at the CJ  speed with a correction that is a function of the local total 
curvature of the shock. Their theory assumes that the evolutionary timescale of the 
main features of the detonation flow is long compared to the particle transit time 
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through the reaction zone. Faster evolving instabilities may disrupt this structure 
and the question of linear stability of the multidimensional steady or the slowly 
evolving detonation state is an important issue in the evaluation of the theory. 

Thus the need for reliable and highly resolved information about linear stability 
characteristics, neutral stability boundaries, the frequencies and growth rates of 
unstable disturbances has directly motivated this study. This information has 
become extremely important for the continued advancement of nonlinear detonation 
theory and the evaluation of the ability of linear stability theory to predict regular 
patterns observed in the violent, nonlinear transverse modes and in particular in the 
context of modern numerical simulation and physical experiment. 

I n  this paper we present a normal mode analysis and solve the singular eigenvalue 
problem by a straightforward shooting method, which in turn defines (numerically) 
the dispersion relation. The dispersion relation can be used to solve for the neutral 
stability curves directly as well as the unstable discrete spectrum. The integration of 
the stability ODES gives the corresponding eigenfunctions. I n  $2 we give the 
governing equations and formulation which are consistent with Erpenbeck's. In $3  
we review the steady state. In  $4 we give an explicit formulation of the stability 
problem as a singular, eigenvalue problem with the important discussion of the 
condition to be applied a t  the end of the reaction zone which is shown to be 
interpreted alternatively as a boundedness or radiation condition. Importantly, we 
show that our formulation automatically includes the CJ  case and that it presents no 
special difficulty. In  $5 we discuss the numerical method and convergence. In $6, we 
give representative results for our detonation model and summarize the one- 
dimensional stability behaviour in parameter space. In  particular we 'present the 
neutral stability boundaries and give growth rates and representative eigenfunctions. 
We also compare our results with all the previous analytical work on this problem 
that is relevant. We present parametric studies of the migration of the unstable 
spectrum as the activation energy and the overdrive factor is varied, and discuss the 
implication of our results in interpreting the physical mechanism of longitudinal 
instability observed in experiment. In  $7 ,  we suggest avenues for future work. 

This first paper is restricted to one-dimensional disturbances evolving in the flow 
direction only (the wavenumber characterizing transverse disturbances is set equal 
to zero). Extensions to non-zero transverse wavenumbers is a straightforward 
extension of this work and will be treated in a sequel. 

2. Formulation 

their dimensional form as 
The governing equations are the reactive Euler equations, which can be written in 

De Dp-l 
= 0, 

DP Due 
Dt Dt D t + P D t  
-+pv - ue = 0, -+p-1vp = 0, 

(2.1 a 4 )  

where the variables p, uc, p and h are the density, lab frame particle velocity, pressure 
and reaction progress variable. Note that v = p-l is used to  identify the specific 
volume. The equation of state and the rate law (i.e. the specification of e(p, v, A )  and 
r(p, v, A ) )  characterize the explosive. For purposes of comparison and simplicity we 
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assume the polytropic equation of state, Arrhenius, simple-depletion form of the 
reaction rate and an ideal thermal equation of state, 

R, T = p v .  

The shock relations are given generally by 

where the o subscript refers to the state immediately ahead of the detonation shock 
with the s subscript used for behind the shock. The variable D', is the normal 
detonation shock velocity as seen in the lab frame, n is the unit normal vector to the 
detonation shock and Zi are the corresponding unit tangent vectors. The above 
formulation is the well-known multidimensional ZND detonation model. We next 
discuss our choice of dimensional scales and specialize to one dimension. 

Dimensional scales are chosen in reference to the one-dimensional, steady 
detonation wave. I n  particular the density, pressure and velocity scales are the 
detonation shock density, pressure and sound speed, p,, p, ,  c,. The characteristic 
lengthscale 1, is chosen as the steady half-reaction zone length and the characteristic 
timescale is the half-reaction zone length divided by the shock sound speed, E,/cs. 
From now on we will adopt, the notation of a tilde ( - )  superscript to denote 
dimensional quantities and an asterisk (*) to denote the one-dimensional steady state 
and an 00 subscript or superscript to denote the state a t  the end of the reaction zone. 

3. The one-dimensional steady state 
The steady one-dimensional detonation is assumed to  travel to the left in the 

negative x-direction. The steady detonation structure is found quite simply by two 
steps. The first is algebraic and assumes the conservation of mass, momentum and 
energy a t  each point in the detonation wave structure (i.e. partially reacted, with 
0 < h < 1,  the one-dimensional, steady, Rankine-Hugoniot (R-H) relations are 
solved analytically). Thus if u* is the relative, dimensionless, steady one-dimensional 
velocity in the wave frame and p* and v* are the corresponding pressure and specific 
volume, then from the algebra of the R-H relations we find in terms of A* that 

where M ,  is the steady shock Mach number (as seen by an observer in the frame 
immediately behind the shock) and a and b are constants and D is the steady, 
dimensionless detonation velocity (whose absolute value is the Mach number of the 
detonation shock relative to the unshocked quiescent explosive) and p the 
dimensionless heat release. These quantities as well as the intermediate constants a 
and b are defined by the relations 

(7- 1) D 2 + 2  
2yD2 - (7- 1) ' 

M ,  = (GZ*-B*)/g, D = d*/Ez, w i t h e  = 
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Note that the steady state variables satisfy the shock conditions 

v*=P*= 1 ,  u*=M,, A * = O ,  a t x = 0 .  13.3) 

The steady wave is such that D < 0 and the structure lies such that x > 0. 
The second step involves the integration of the one-dimensional steady rate 

equation to determine A* as a function of the wave coordinate x. Note that formulae 
(3.1) and the (dimensional) steady rate equation inferred from (2.14 determine the 
characteristic dimensional half-reaction zone length as 

f c  = [ [(,iid(A)*-d*)/?*(A)]dh = E:,*&-l r~*(A)(l--A)-~exp[8/(p*v*)]dA. (3.4) 
t 

J o  

The distribution of the 

where 
r* = k ( 1 - A *  

J o  

eaction is then governed by the integral 

x = lu*(A)/r*(A) dh, 

exp [- 8/(p*v*)], IC = [ i fc /~3 ,  8 = ,@/(R”, fi,*). (3.5) 

4. The linear stability problem (formulation in the wave coordinate) 

dimensional governing equations to the shock attached coordinates 
We now derive the linear stability problem. First we transform the one- 

x = . q j * / - *  c, t-$.(t), t, 

u = ud - (d*/G). 

(4.1) 

(4.2) 

where u is now the particle velocity relative to the steady frame 

The governing system of equations (mass, momentum, energy and rate) are simply 
represented in matrix form as 

z, ,+A *z,x-b$,t = C, (4.3) 
where 

- v  0 0 0 
V / Y  0 

0 YP 
0 0  

We linearize the above equations and seek solutions to a normal mode expansion of 
the form 

where the prime superscript refers to a small perturbation. For complex a, z’ is 
complex, likewise $’ is a complex scalar. The linearized perturbation equations 

(4.6) 
reduce directly to az’+ A* z ’ , ~  + C* . Z’-ab*$’ = 0. 

The definition of A* and b* follow directly from (4.4), whereas C* is a matrix defined 
by the steady state which has contributions from both A - z , ~  and c in (4.3) namely 

z = z*(x)+z’(x)exp(at), $ = $‘exp(at), (4.5) 

I V .  X 0 0 
P, x/Y u. X 0 0 

( Y - W ,  - ( Y - 1 ) P  , (4.7) 
[r,,--r/vI p,x YU,x- , p  V 

- r , P  - r , h  A. 2 - r , u  
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where the sensitivities of the reaction rate r with respect to the thermodynamic 
variables corresponding to (2.2) are given explicitly by 

The perturbed shock conditions derive boundary conditions for (4.6). The 
perturbed shock conditions are arrived a t  by the following steps. First, (2.3) are 
specialized to the unsteady shock attached frame using the definitions of (4.1) and 
(4.2) to determine the normal detonation velocity, 8, = 8 + $ , t .  These relations are 
then linearized according to the normal mode expansion (4.5) finally obtaining 

a$’, p1=-=ay, h’=O. (4.9) 
2(D2+ 1 )  a y ,  u’= 

4 
v’ = 

(Y+1)D2M,  (Y + 1) D2 (Y+l)  

4.1. The linear stability problem (formulation in the reaction coordinate) 
For a single reaction rate with a monotone decreasing reactant with distance in the 
reaction zone, we can replace the wave coordinate with the reaction coordinat,e. In 
particular, we introduce the independent variable s = h*(x) such that 

a/ax = (r*/u*) alas, (4.10) 

and in particular the derivatives in the definition of C* and b* are modified according 
to definitions (4.7) and ( 4 . 4 ~ )  respectively. For convenience we normalize the 
perturbation 2‘ with respect to its shock value (4.9) by defining , 

I 
( = s-l * z’/$’ ,  (4.11) 

where 
4 

0 

(Y + 1)D2 
- 0 0 

0 0 

(4.12) 

Using the change of variable (4.10) and definition (4.11) in (4.6), followed by solving 
for d(/ds, we obtain 

dC/ds = -aF*.&-G*-(+ah*,  (4.13) 

where the steady state matrices F*, G* and h* are real functions of the steady 
reaction coordinate s defined by 

(4.14) 

The shock conditions become initial values (at s = 0) that are needed to solve the 
ODES in the reaction coordinate. Because of our normalization of the perturbations, 
these become simply 

r(0) = ad, d = (1,1,1,0). (4.15) 

For a given value of a,  a solution to the stability equations is defined by 
integration to the end of the reaction zone (s = 1, r* = 0). However, in order to 
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determine the dispersion relation (derived by the normal mode expansion) an 
additional condition which is discussed next, must be given. We show in the next 
section that this condition is a boundedness condition of perturbations at  the end of 
the reaction zone and is equivalent to a ‘radiation’ condition, i.e. that no waves 
emanate from the equilibrium zone to interfere with the evolution of the perturbed 
solution. 

4.2. Discussion of the rear boundary condition 
In order to solve the initial-value problem of unsteady detonation propagation, it is 
common to prescribe a condition at some distance behind the detonation shock. This 
condition is called the ‘piston condition’ and the material velocity is prescribed to 
be exactly the velocity of a supporting piston at  the piston location. The piston is 
usually placed at the end of the reaction zone in the following flow. 

When models of steady detonation are considered, the length of the reaction zone 
is calculated from the resolved rate law. The length of the zone corresponding to 
complete reaction, calculated in terms of half-reaction lengths, can be inferred from 
(3.5) to be 

l,, = u*(A)/r*(A)  dA. (4.16) 

It can be clearly seen from (4.16) that the steady reaction zone length is finite or 
infinite if the above integral is convergent or divergent which, in turn, depends on the 
functional form of r*(A). Since we concentrate on the rates with simple depletion (i.e. 
r* - (1 - A )  as did Erpenbeck and most other researchers), the steady reaction zone 
length is infinite. 

Thus any condition that we place on the stability perturbations at  the end of the 
reaction zone is applied at an infinite distance as measured from the detonation 
shock. Because of the weak logarithmic singularity of (4.16), a practical infinity may 
only be a few half reaction zone thicknesses from the detonation shock. Our 
conclusions about the character of the stability of our flow depend on the assumption 
of simple depletion in the sense that we must apply a condition on the solution at  a 
boundary at  an infinite distance from the shock instead of a finite distance from the 
shock. The stability of detonation flows corresponding to reaction rates that produce 
finite length reaction zones must be studied separately, but probably can be studied 
by the methodology given here. 

A simplifying assumption that has been made in prior research on the stability 
problem, is to assume that perturbations in the rear of the flow that propagate 
forward to interfere with the detonation shock, can have no causal influence on the 
stability since such disturbances would take an infinite time to disturb the entire 
detonation flow. Thus a more natural boundary condition, that ofa constant velocity 
piston a t  infinity (say) is replaced by a statement that no acoustic waves on forward 
characteristics emanate from the piston to influence the detonation. This condition 
has been labelled a ‘ causality ’ condition in Buckmaster & Ludford (1988) and we use 
the terminology ‘radiation ’ condition which is common to acoustics. 

Regardless of the view that is taken on how to model the flow at the end of the 
reaction zone, one additional, homogeneous, boundary condition is required in order 
to close the system of equations to derive the dispersion relation. Subsequently we 
will derive this condition in two distinct ways and in each case, the condition is the 
same. The first, physically based, derivation of the ‘radiation ’ condition is an 
acoustic analysis of the flow near the end of the reaction zone. The second derivation 
is based on the requirement that only spatially bounded solutions to the stability 
perturbations equations are allowed when considering unstable modes. The explicit 

1: 
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condition we derive in this way is essentially the boundedness condition applied by 
Erpenbeck in his Laplace-transform based formulation of this problem. We give both 
derivations and show that they are equivalent in order to clarify the physical and 
mathematical interpretation of the 'radiation condition ' as applied to these spatially 
unbounded detonation flows. 

We point out that the choice of the homogeneous condition, consistent with a 
given flow, determines in part the final stability results. For example, one can still 
imagine applying a condition other than the radiation condition. For the constant 
velocity piston, the perturbation particle velocity a t  the unperturbed piston location 
is zero. Other types of rear support conditions can be considered as well, 
corresponding to slightly different idealizations or different physical experiments. 
Different support conditions will ultimately lead to different stability conclusions. 
However the methodology presented here is expected to work well for other cases 
and the constant velocity piston condition has been tested by us and is discussed 
briefly in 56.4. 

4.2.1. Acoustics at the end of the reaction zone 
At the end of the reaction zone the detonation state is near its complete reacted, 

equilibrium value. Thus we can assume that the solution may be represented as its 
R-H, equilibrium value plus an acoustic perturbation. In terms of z, x and t this 
expansion would be represented as 

z=z,+z'(x,t), z'-f, (4.17) 

where the 00 subscript refers to the reacted equilibrium state of the steady 
detonation and the ' a '  superscript refers to an 'acoustic ' expansion. The expansions 
inserted in the governing equations generate a set of linear, constant coefficient, 
hyperbolic partial differential equations in x and t ,  

z;t,+A" -z:% = cooha, (4.18) 

where A" follows directly from (4.4b) and cw is given by 

(4.19) 

The general solution is derived as follows. First the solution for Aa is found directly 
and can be written as 

(4.20) ha = (r4)4 = exp [rpoht]F4(x-u, t ) ,  

and for the purposes of the acoustic analysis we can assume the arbitrary F4 to be a 
single Fourier component. Thus we carry out the solution with 

F4 = exp [(rpO,/cw) k (x -u ,  t ) ] ,  where k is complex. (4.21) 

Then by direct substitution it is simple to verify that the general solution can be 
written as 
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where 

(4.23) 

In  (4.22), Firt,  i = 1, 2, 3, correspond to the travelling-wave solutions of the 
homogeneous, inert acoustics problem around the equilibrium state. The last 
independent solution, r4 can be found by solving for a particular solution to the first 
three acoustic equations of (4.18), with ha known. 

The radiation condition requires that there be no perturbation to the steady state 
a t  the end of the reaction zone that travels towards the shock from the piston. This 
requirement sets F3 = 0. Then, if t,he disturbance is to be represented by three 
linearly independent solutions to the acoustic equations instead of four, an algebraic 
constraint on the solution must be satisfied which is homogeneous. In  particular from 
(4.22) we see that u”, pa ,  ha must be expressed as a linear combination of F2 and 
exp { ( r? / c , )  [k(z-u, t )  + c ,  t ] } .  The necessary constraint relating ua, pa; ha is that 

“7- 1)P/(yC2,)1~a+(1-k)[Ua/C,-Pa/(yp,)l = 0. (4.24) 

Finally, we convert this acoustic wave result to the nomenclature of our stability 
formulation in the wave coordinate x. In  particular, this conversion identifies k in 
terms of the growth rate a. For example, the function exp {(r?/c , )  [ k ( x - u ,  t )  + c, t]} ,  
appearing in our acoustic solution a t  the end of the reaction zone can be written as 
f(z) exp (a t ) ,  thus identifying 

a = r?( 1 - ku,/c,) .  (4.25) 

Equation (4.24) rewritten in terms of a (with z” - z’) obtains 

rT = (1,0’0’0), rT = (-~,,C,,yp,,O), r: = ( -u rn ,  -c,, yp,,O) 

rZ= ( - k l k 2 ~ m ,  -k,kc,,k13/pm>1), k1= ( Y - ~ ) P / [ ( ~ - ~ ~ ) ~ P , V , I .  

- [ ( Y 2 -  ~)~~,/(rc“,l~’+[(~-~,/c,)-~I~P“hl(U’/~,-P’l(~P,)) = 0. (4.26) 

Rewriting (4.26) in terms of 4, M ,  = u,/c, and D (for the implementation of the 
shooting method) shows 

H(a)  = - ( Y ~ - ~ ) P / [ ~ Y ~ ~ I M ~ C ~ + [ ( ~ - M , ) - - / ~ ~ I [ ( ~ ~ + ~ ) / ( ~ D ~ )  Cz++M, Q] = 0, 

= H(a;y ,P ,O ,D)  = 0. (4.27) 

To our knowledge condition (4.26)-(4.27) has not appeared in this explicit form 
before. In the asymptotic studies of Buckmaster & Ludford (1988) and in the 
structureless analysis of Majda & Rosales (1983) the condition that appears sets 
A ’ =  0, and does not account for the perturbation of the reaction rate in the 
equilibrium region. Also, in Erpenbeck’s work and the approximate analysis given 
by Abouseif & Toong (1982), this condition is implied but never explicitly written. 
It is also important to note that the radiation condition is not singular for the C J  
limit whereM, = 1 .  Indeed, the previous acoustic analysis applies equally well to the 
case of overdriven and C J  detonation waves. 

4.2.2. The boundedness condition at the end of the reaction zone 
Now we explore the structure of the solutions of the perturbation equations near 

the equilibrium point and we show that we derive exactly condition (4.26)-(4.27) as 
the boundedness condition a t  the end of the reaction zone. First, we notice that the 
steady state perturbation equations, in the reaction coordinate s are singular at the 
end of the reaction zone, r* + O  as s-f 1.  For both the overdriven and the C J  
detonations, one source of singularity is the vanishing of the steady reaction term as 
r* + 0. For the C J  detonations, an additional singularity arises through the fact that 
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the steady flow is sonic at the end of the reaction zone. The sonic parameter is defined 

7 G 1-M2,  M2 = u2/c2, (4.28) 

To show this more clearly, the asymptotic behaviour of F*, G* and h* in (4.14) can 

by 

and vCJ -to as s+ 1. 

be found directly from their definitions as 

F* - 0(1/(7r*)), G* - 0(1/(7(1-8))), h* 0(1/7), (4.29) 

where the general dependence on the form of the depletion factor depends on the 
detailed specification of r*. For simple depletion the rate is proportional to (1 -5). 
The sonic parameter 7 vanishes a t  the end of the reaction zone only for the CJ case 
when it has the asymptotic behaviour 

7 C J  (l-s)'(l -M:)/a, (4.30) 

The sonic parameter, 7,  appears through the dependence of F*, G* and h* on A*-' 
where a is defined in (3.2d). 

which is given by 
v/u -v/c2 v2/(yuc2) 

A*-' = ( 0  0 - u / 2  yp/c2 vl(yc2) -u/c2 q*. 0 

The explicit appearance of the term (1  - 5) in the asymptotic description of G* arises 
from the term r*Jr* in its definition. Thus this dependence will be maintained for 
reactant depletion with an arbitrary power of (1 - A ) .  

For the overdriven case, 7 does not vanish as s+ 1 and for the case of simple 
depletion where r* N (1  -s), the asymptotic form of the governing equations for the 
perturbations a t  the end of the reaction zone are given by 

(1  - S) d(/ds = - (aF* + 6.) * 5, (4.32) 

(4.31) 

0 0 0 7 / u  

where 
F*=l im( l -s )F* ,  G*=l im( l -s )G*,  (4.33) 

8+1 S - t l  

are constant matrices defined by the above limits. 

the CJ case noting (4.30) to obtain 
Similarly we write down governing equations near the end of the reaction zone for 

( 1  -g)gd(/ds = - (aF& + G;,) * 5,  (4.34) 
where 

are constant matrices defined by the above limits. 

simple coordinate changes y, y, ,, 
In both instances, the problem of finding a solution to 6 is simplified by introducing 

(4.36) 

which reduce the local governing equations to that of linear equations with constant 

/ (1 - s)-' ds = dy, 

(l-s)-;ds = dy,,, for CJ, 

for overdriven detonation, 

coefficients 
dr/dy = L - 6, 

d</dycJ = L,, * 6 

for overdriven, 

for CJ,  
(4.37) 
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where 

f = - (aF* + G*), f c, = - (aF,*, + G,*,). 
The exact definitions of L and L,, appear in Appendix A. 

For both cases, the general solution has the asymptotic form 

113 

(4.38) 

(4.39) 

where the eigenvalues pi and eigenvectors gi are found by solving the respective 
eigenvalue problems defined by the solutions to (4.37). Positive values of yr  
correspond to unbounded growth at the end of the reaction zone since the definitions 
(4.36) imply y - [( -rp”n)/um] X, ycJ - 2exp{$[( -rp”n)/um] x}, so that y, ycJ --f co ass-+ 1. 
The eigenvalues p r  are obtained as 

114.40) 

(4.41) g r = S - l . r i  (i= 1,2,3,4) ,  withk= ( i - a / r 3 ) / M m .  

When the real part of the growth rate a is positive, corresponding to unstable 
perturbations, the spatially unbounded solutions correspond to the eigenvalue 
(vector) y3, since r? < 0. Applying a boundedness condition requires that the 
asymptotic structure of the solutions for the perturbation be independent of the 
unbounded solution. Once again we suppress this solution and the solution vector for 
the perturbation must be represented by three linearly independent solutions 
proportional to rl, r2 and r4 and as a consequence, a homogeneous constraint is 
required. The relation so derived is exactly (4.26)-(4.27). 

1 
P1 = (a/rp”n), ru.2 = ( ~ / r p o , ) J f m ( l  -Jfm)/Ym9 P3 = - (~/rPOh)Mm(l + J f m ) h m ,  

y1 = 0, y2 = 0, y3 = -2(a/rp”n)a/(l-M,2), y4 = 0, 

y4 = (a/r?) - 1, for the overdriven case, 

for the C J  case. 

The eigenvectors are found to be given simply by 

5. Discussion of the numerical solution and technique 
The problem that must be solved to determine the dispersion relation is a two- 

point boundary-value problem which is succinctly stated in terms of complex [ and 
a as 

d[/ds=-aF*.[-G*.<+uh* f o r O < s <  1, (5.1) 

with the shock boundary condition given by 

l, = ad, d = ( 1 , 1 , 1 , 0 )  at the shock at  s = 0, (5.2) 
and 

H(a) = - ( Y 2 -  1)P/[4VmIJfm C4+ “1 -M,)-a/rp”AI[(02+1)/(202) C2 +Jfm 6 1  = 0. 
15.3) 

Since a and are complex, the problem consists of eight ordinary differential 
equations subject to eight shock and two boundary conditions in the equilibrium 
zone. The two extra conditions for the shooting problem can be thought of as 
determining a. While the problem is formulated in a general fashion, suitable for 
either analytic or numerical means, numerical solution provides the means for the 
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most comprehensive exploration of the dependence of instability on the various 
parameters that define the steady state. However, this last statement is true in 
practice only if a reasonably efficient and numerically robust algorithm is found to 
solve the above problem. 

In order to solve this problem numerically, we adopted a shooting method. For our 
calculations a total of N space nodes have been used to define a uniform grid on the 
interval S E  [ O ,  1 - l /W. Thus as N is increased, larger physical domains are 
considered. First, the steady solution is developed on the grid for a set of chosen 
steady state parameters. This simply involves evaluation of (3.1) for p*, u* and v* 
with A* = s and further evaluation of F*,  G* and h* in (5.1) on the grid. Next a trial 
value of a is assumed and the differential equations (5.1) are integrated forward from 
s = 0 towards s = 1. When the numerical integration reaches s = 1 - 1/N (say), the 
real and imaginary part of the function H(a), defined by (5.3) are evaluated. 

For fixed steady state parameters, an arbitrary value of a = a,+iai does not 
satisfy the radiation condition, H ( a )  = H,+iHi = 0. Thus a is varied until this 
condition is met. A simple way to search numerically for approximations to a is to 
use the numerical integration to determine values of residual functions H,(oL,, ai), 
Hi(a,, ai) a t  the approximate end of the interval, s = 1 - 1/N and to determine a,, a, 
as the roots which set these residuals equal to zero. An elementary, two-variable, 
Newton-Raphson technique was employed to provide an iterative scheme to search 
for the roots of the residuals and determine the eigenvalues. However, we have also 
searched directly for OL in the complex plane by merely recording the values of the 
residuals as a, and ai are varied and then using a contour plotting routine to 
determine the approximate locations of zeros in the complex a-plane. We have 
dubbed this simple approximate method the ‘carpet search’. The first method 
(Newton-Raphson) accurately determines a single converged eigenvalue and 
eigenfunction. The ‘ carpet search ’ method can readily identify multiple eigenvalues 
with positive real part for a given steady parameter set. 

The numerical shooting method combined with the Newton-Raphson iterations 
on the residuals of H(a) has the advantage that it can be automated to search for (in 
principle) any two independent parameters. As a simple and important example of 
this, we found the neutral stability curves by setting a, = 0 and iterating on ai and 
one additional parameter. In studies that follow, this other parameter has been the 
overdrive factor f = (D/D,,)2, the polytropic exponent y ,  and the heat release 
parameter ,8 and the dimensionless activation energy 8.  In  a typical numerical study, 
one sets all the parameters equal to their fixed values with the exception of a single 
pair of parameters of interest. For example, in a neutral stability study we set 
a, = 0 and all of the other parameters fixed except the heat release parameter p and 
searched for (ai, p) pairs. Once a converged pair was found, it served as a seed value 
to iterate for other parameter pairs in that neighbourhood of parameter space. By 
simply using the last converged pair as a seed, we were able to calculate an entire 
neutral stability curve in one computer run by choosing fixed values of parameters, 
including f (say), iterating on (ai, p) ,  followed by incrementing the value off in an 
outside loop. In all of our work to date, this method has worked reliably with only 
a few iterations (typically 6 or less) required for each convergence. A relative 
convergence criteria based on the residuals was chosen. The integration of the 
differential equations is performed by an explicit, fourth-order Runge-Kutta 
method with Gill’s coefficients. The Jacobians of the 2 x 2 matrix necessary for the 
Newton-Raphson method are evaluated via finite differences. If modest resolution of 
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FIQURE 1. Ratios of O/E and p/Q versus for varying f. 

the ODES is allowed, this method is not particularly computationally intensive and 
gives qualitatively accurate results. 

To compare with other researcher's results, slightly different scales are introduced. 
The scaled activation energy and the heat release with respect to reference values in 
the unshocked state are defined by 

E E E / ( B g  ?:), Q = O/(R", p z ) ,  (5.4) 

whereas our corresponding parameters 0 and /3 are scaled with respect to shock 
values. Our scaling has the advantage of being the natural one to discuss solutions 
to the differential equations behind the shock. However 19 and /3 then depend on the 
shock strength or equivalently the piston velocity of a given experiment. Erpenbeck's 
original scaling has the advantage that E and Q are only dependent on the material 
properties. The relations between E and 8 and between Q and /3 are found explicitly 
to be 

/3/Q = 8 / E  = [ (y+  1 )  a- l ] [a+(a-  l)q]-'[-ya-(a- 1) q]- l ,  

where q2 1 - [2(y2 - 1) QD2]/[y(D2 - 1)". (5 .5)  

Note that q = 0 in (5 .5)  defines Dcj. Equivalently, the ratios P/Q and $ / E  can be 
written explicitly in terms of the overdrive factor f = (D/D,,(y, Q))2. Plots of these 
ratios are shown in figure 1 for varying f. 

In implementing the scheme numerically, we found it convenient to solve for 
(-a/r?) so as to eliminate strong dependence of the rate on the state which occurs, 
in particular, for larger activation energies. An example of a convergence test of the 
scheme described above is shown in figure 2. The convergent eigenvalues (( -a,/rp.,), 
(-a,/r?)) are plotted against the number (N) of uniform space nodes used in the 
integration of the stability ODES. Usually no more than 200 space nodes were ever 
required to ensure convergence of the iteration and no more than 2000 nodes was 
required to ensure an accurate result. However, in general, the required number of 
nodes does depend on the parameter set under investigation. More space nodes are 
required (when using a uniform mesh) for the C J  case due to the stronger character 
of the singularity near s = 1 and more iteration is required. Frequent checks were 
made of the approximate eigenfunctions to ensure that the solutions to the 
perturbations equations were being numerically resolved. 



116 H .  I .  Lee and D .  S. Stewart 

100 1 ' ' """I ' ' " " " I  ' ' """Q ' " 7 

10 
10' 10% 103 104 106 

Number of space nodes, N 

FIGURE 2. Shown is the convergence of (-a,/~pO,), ( -a , / r?)  found by the shooting method as the 
number of uniformly distributed space nodes for integration, N was increased. y = 1.2, E = 50, 
Q = 50 a n d f =  1.2. 

We also made a more detailed convergence test for the case of neutral stability 
when it was suggested that convergence based on the mesh size may be slowed 
(Erpenbeck & Bdzil, private communication). For some different, representative 
cases, where qualitative checks showed the slowest convergence, we found the order 
of convergence. The values of both f and ai/( -r?) were fit to the formula, 

where q50, A and B were found by the fit. B determines the order of convergence. 
We found that for y = 1.2, Q = 50, E = 50 that B = 1.065 and for y = 1.2, Q = 10, 
E = 50, B = 0.954. These results show that for finite (l/N), the critical values off 
and ai are overpredicted. 

Eigenvalues with negative real part, while not applicable to conclusions about 
instability according to  this analysis, were found owing to the fact that the condition 
(4.26)-(4.27) was actually applied a t  a finite value of s- 1 = l/N. This condition can 
be interpreted as a physical condition, admitting negative eigenvalues which 
corresponds to applying the radiation condition a t  a large but finite distance behind 
the detonation shock. 

Figures 3 (cz-3 ( d )  show some representative profiles of detonation structure 
corresponding to different parameters and their stability. Higher and lower 
activation energy causes the induction zone to  lengthen and shorten re,spectively. In  
particular i t  is possible to study the important case of large activation energy by 
these methods, in which case the detonation reaction zone takes on the 'square wave ' 
structure with the reactionless induction zone followed by a rapid 'fire' region and 
a final inert relaxation zone to the equilibrium state. Figure 4 shows the structure of 
a typical eigenfunction obtained. 

Two-dimensional contour plots (corresponding to  the carpet search), based on the 
residual functions of H(a)  were made to verify the existence of multiple unstable 
roots and to  ensure that we could identify the eigenvalue with the largest real 
positive part as the parameters were changed. As a consequence, we have been able 
to identify all of the unstable modes for a given parameter set defined by the 
dispersion relation, H(a;  y ,  E ,  Q ,  f )  = 0 in a given segment of the complex a-plane. 
A typical contour plot of a residual function is shown in figure 5, for an overdriven 
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FIGURE 3. (a )  Profiles of steady state variables displayed in the reaction coordinate, s, for the 
parameter set, y = 1.2, E = 20, Q = 100, f= 1, (CJ).  The reaction rate is normalized by its 
maximum value. The maximum reaction rate occurs near s = 0.35. This steady state is stable. ( 6 )  
Profiles of steady state variables displayed in the reaction coordinate, s, for the parameter set, 
y = 1.2, E = 20, Q = 10, f = 1 ,  (CJ). The reaction rate is normalized by its maximum value. The 
maximum reaction rate occurs nears = 0.70. This steady state is unstable. (c) Profiles of steady state 
variables displayed in the reaction coordinate, s, for the parameter set, y = 1.2, E = 20, Q = 10, 
f = 3, (overdriven). The reaction rate is normalized by its maximum value. The maximum reaction 
rate occurs near s = 0.40. This steady state is stable. ( d )  Profiles of steady state variables displayed 
in the reaction coordinate, s, for the parameter set, y = 1.2, E = 60, Q = 10, f = 3, (overdriven). 
The reaction rate is normalized by its maximum value. The maximum reaction rate occurs near 
s = 0.75. This steady state is unstable. 

detonation (y  = 1.2, E = 50, Q = 50, f = 1.2, N = 2000). Figure 5 ( a )  shows a contour 
plot of a subset of the total region that we studied. The contours are the level curves 
of a function based on the residuals of H ( a )  given by IH(a)l"/la/(~?)I", where the 
constant n = 1.2 and m = 1.4 were chosen for the purpose of displaying the character 
of IH(a)l. Four zero locations are shown by the contour map. Figure 5(b )  shows a 
three-dimensional plot corresponding to the contour plot of figure 5 (a )  with n = 1.2 
and m = 1.4. The roots are found a t  the local minimum points of IH(a)J. In  our studies 
we found that the converged root identified by the Newton-Raphson scheme 
depended on the starting point. The mountainous ridges identified in figure 5 ( b )  
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FIGURE 4. (a ,  b )  Profiles of the real and imaginary parts of the perturbations a t  conditions of 
neutral stability. y = 1.2, E = 50, Q = 50, f =  1.731. The components 6 have been scaled with 
respect t o  ( - r : )  and the scaling factor shown. 

clearly illustrate that the different roots of the dispersion relation have well-defined 
domains of attraction when iterative schemes such as Newton-Raphson are used to 
find them. 

6. Discussion of results 
In this section we discuss some of the results that we have obtained by this exact 

numerical treatment. In  particular, we make comparisons of our results for neutral 
stability and with the unstable spectrum approximately calculated by other 
researchers. We also give the implications of our results in identifying the physical 
mechanism of longitudinal detonation instability. 

6.1. Brief history 
To elucidate our own contributions, a brief, selected history of this problem is 
required. More comprehensive histories can be found in chapter 6 of Fickett & Davis 
(1979) and in the excellent introduction found in Abouseif & Toong (1982). 

The model equations used here and by other workers are found in Erpenbeck's 
1962 paper on stability. Erpenbeck used the Laplace transform in time to analyse the 
solutions to the linearized initial-value problem and his is the only other exact 
treatment of plane instability, thus his results provide a basis for comparison. 
However, owing to the nature of his formulation and numerical method (discussed 
later) his results are largely confined to determining the limits of stability, and except 
for a very few cases, unstable growth rates and frequencies were not calculated. Also 
the neutral stability curves were interpolated and the continuous dependence of 
stability on the parameters of the system was not found. 

In  1966 and 1970, the results of a nonlinear, numerical, one-dimensional simulation 
were published by Fickett & Wood and Fickett, Jacobson & Wood and isolated 
comparison of the low-frequency oscillations in the simulations were made with those 
calculated by Erpenbeck. In  1971 and 1972, McVey & Toong, and Alpert & Toong 
published studies of the detonation instability observed when blunt projectiles are 
fired a t  high speed into detonable gases. There, they elaborated a wave-interaction 
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FIQURE 5. (a) Contour plot of IH(a)l"/la/(rT)lm, n = 1.2 and m = 1.4 in the region a J (  - rp0) E r0.02, 
0.061 and ai/(-rpOA)~[0,0.7]. E = 50, Q = 50, f= 1.2, ( - rT)  = 7.926, N = 2000. Four roots are 
located. ( b )  Three-dimensional plot of ~ H ( a ) ~ " / ~ a / ( r ~ ) ~ m ,  n = 1.2 and m = 1.4 in the region 
a , / ( - r5 )~[0 .02 ,0 .06 ]  and a, / ( - rpO,)~[O,0 .7] .  E = 50, Q = 50, f =  1.2, N =  2000. The roots are 
located in the local minimums. 
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mechanism to describe the observed longitudinal instability which relies on the 
existence of an induction zone behind the lead shock. The essential ingredient of this 
proposed mechanism is that temperature perturbations created by acoustic 
disturbances reflecting off the shock and the reaction zone, change the induction time 
and cause the dramatic movement of the reaction zone forwards and backwards 
relative to the shock. From the experiments they were able to show that the periods 
of the oscillations were nearly proportional to the chemical induction time in 
hydrocarbon-air and hydrogen-oxygen mixtures. 

In  an attempt to theoretically predict and confirm the wave-interaction 
mechanism suggested earlier, Abouseif & Toong (1982) gave an approximate linear 
stability analysis for the normal mode instabilities with ad hoc approximations 
justified by arguments of large activation energy reactions, but not made by 
systematic asymptotic approximations. In  1988, Buckmaster & Ludford gave an 
asymptotic treatment of the square wave detonation for large activation energy for 
very low frequencies on the scale of the inverse induction time, which included the 
effect of transverse wave numbers. Later in 1988, Buckmaster & Nevis gave a one- 
dimensional stability analysis for higher frequencies on the scale of the inverse 
induction time, which is an attempt to  carry out rigorously the asymptotic analysis 
of the square wave detonation first indicated by Erpenbeck (1963). Their calculation 
only considers the induction zone. 

6.2. Summary of neutral stability and comparison with Erpenbeck’s results 
Erpenbeck’s formulation of stability is the most general, in that  solution of the 
initial-value problem by the Laplace transform in time contains a superposition of all 
the spectral modes and in particular those basis functions that can be obtained by 
separation of variable (normal modes). I n  1962 he solved for the transform of the 
shock perturbation @‘(t) and the condition for instability is based on analysing the 
singularities of the transform function, identified by the zeros of the denominator. 

Instead of devising a procedure to solve directly for these zeros, which would yield 
the unstable, discrete spectrum with the determination of the neutral stability curves 
as a special case, he used the Nyquist criteria to count the number (if any) of unstable 
poles,of the transform of y?’ in the right half (unstable) portion of the complex plane. 
Erpenbeck’s method requires the evaluation of the denominator of the transform 
function over a large semi-circular contour in the right half-plane utilizing the 
principle of the argument to determine the number of zeros. The definition of how the 
transform function varies over this contour, requires solutions to the stability 
equations for each point to be evaluated on the contour. Erpenbeck showed that in 
order to guarantee proper convergence of the result, it is necessary to discard one 
unbounded solution. This requirement results in a condition placed on his stability 
formulation that is equivalent to our condition (4.26)-(4.27) and derives from similar 
logic to that found in 54.2.2. The method that Erpenbeck (1964) outlined to count 
the number of poles is a hybrid, numerical-asymptotic scheme since the number of 
zeros is calculated as the sum of an asymptotically calculated contribution on the 
infinite semi-circular contour and a numerically evaluated contribution from a 
Bromwich contour line. Error estimates of his numerical method based on his 
published work are difficult to make as information about the mesh sizes, tolerance 
and convergence tests was never given. 

We now turn to a discussion of our results. Figures 6, 7 and 8 show the neutral 
stability curves and boundaries. A neutral stability curve is determined by first 
setting a, = 0 and by solving for ai and f (say) with the other parameters ( E ,  Q,  y )  
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FIGURE 6. (a )  The neutral stability curves in an (f, &)-plane for y = 1.2 and E = 50. The curves are 
numbered according to increasing frequency. At Q = 10 and 50, locations of additional neutrally 
stable roots are shown. ( b )  The neutral stability curve is shown as the outermost boundary of (a). 
No unstable roots are found to the right of the curve. The ends of the error bar shown indicate the 
points a t  which Erpenbeck found instability (to the left) or stability (to the right). The solid line 
is a reproduction of his hand-drawn interpolation. -, Erpenbeck; ....., Lee & Stewart. ( e )  The 
neutral stability curves in an (f, &)-plane for the lowest frequency (fundamental) mode for y = 1.2 
and E varying. The region to the far right is stable. 

fixed. Then the curve is mapped out by slightly incrementing a second parameter Q 
(say) and solving for a new (f,ai) pair. A neutral stability boundary is the curve in 
parameter space that defines the regions when there is, or is not, an unstable 
spectrum. The neutral stability boundary is in general found from a union of neutral 
stability curves for which the mode of neutral stability is the most unstable 
(rightmost). Suppose we order the unstable modes with increasing frequency, then if 
it  were the case that the lowest frequency (fundamental) mode was always the 
rightmost mode, then the neutral stability boundary would be the neutral stability 
curve for that  mode. However, this is not generally the case as the rightmost modes 
switch as the parameters are varied, in which case the neutral stability boundary is 
found by a union of segments of neutral stability curves as explained above. 

Figure 6 ( a )  shows a number of neutral stability curves in a ( f ,  Q) parameter plane 
for E = 50, y = 1.2. Each curve shown is the result of continuous computational 
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FIGURE 7. The neutral stability curves numbered by frequency for C J  detonations, shown in an (E,  
&)-plane, for fixed 7 = 1.2, f =  1. The lowest frequency neutral stability curve is the neutral 
stability boundary. Below a value of approximately E = 14 the detonations are stable. 
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FIGURE 8. The neutral stability curves ordered by frequency in a (f, 7)-plane, for & = 10 and 
E = 50. The region above and to the right of the curves shows no instability. 

runs, advancing through values of the heat release Q or f. Each curve tracks a mode 
corresponding to its ordered frequency in the spectrum, which are numbered in the 
figure. The results show (for these parameter values) that the neutral stability 
boundary is comprised of the neutral stability curves for the first and second modes. 
The neutral stability curves for higher frequencies generally lie in the interior of the 
unstable region of the neutral stability boundary. The figure also demonstrates that 
logic of finding the neutral stability boundary is complicated by the fact that the 
most unstable modes switch to different frequencies so that many, if not all of the 
neutral stability curves need to be found to define the neutral stability boundary 
unambiguously. In this sense Erpenbeck's method for determining the neutral 
stability boundary, could be considered more direct. Figure 6(a )  also shows the 
location of neutral stability roots at higher frequency a t  Q = 10, and Q = 50. 

Figure 6 ( b )  shows the exact neutral stability boundary determined from figure 
6 (a )  compared against the interpolated (j, &) neutral stability boundary given by 
Erpenbeck (1964) for y = 1.2, E = 50. The ends of the error bars shown at fixed Q 
indicate the points a t  which Erpenbeck calculated the number of zeros of the 
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denominator of the transform function and made a determination of instability (to 
the left) or stability (to the right). The solid line is a reproduction of his hand-drawn 
interpolation shown in his original figure. Despite possible discrepancies due to 
Erpenbeck’s indeterminant numerical resolution, we find that our curves lie within 
Erpenbeck’s indicated error bars. 

Figure 6 ( c )  shows the neutral stability curves of the lowest frequency mode in a 
(f, Q)-plane for fixed y and varying activation energy E .  Again, the region to the left 
of the curve (towards f = 1 )  corresponds to parameter regimes of instability. The 
general trend that is observed is that increasing the overdrive factor for a given 
explosive suppresses the inherent instabilities of the flow. Also as the activation 
energy is increased, the region of (f ,Q) parameter space that corresponds to 
instability increases. 

Figure 7 shows the neutral stability curves corresponding to CJ detonations in a 
heat release-activation energy parameter plane for fixed y ,  consistent with the 
trends shown in figure 6. The neutral stability boundary is determined by the lowest 
frequency mode. These curves have not been presented before and it shows that for 
the C J  case if the activation energy is sufficiently low, unstable modes are not 
present, regardless of Q. 

Figure 8 shows the previously unknown dependence of one-dimensional stability 
on the equation of state through variations in the polytropic exponent y. Our 
calculations indicate that each frequency defines a neutral stability curve that is 
double-valued in y for a range off. For fixed y ,  there is a range off for instability. 
For y sufficiently large, instability is suppressed. Our partial results indicate that the 
neutral stability curves a t  higher frequencies cross a t  higher values off. Whether or 
not there is a minimum value of y ,  for all f, for stability, was left unresolved as it 
became difficult and expensive to compute with values of y close to 1. 

6.3. The unstable spectrum, variation with the activation energy and the 
square wave limit 

The migration of the discrete spectrum as the activation energy varies is of particular 
interest. For large activation energy, the detonation structure connects a nearly inert 
induction zone to a nearly inert equilibrium zone by an R-H, discontinuity, dubbed 
the ‘fire’ by Fickett. This structure is known as the square wave. The location of the 
reaction zone is determined by the induction time of the reactants passing through 
the lead shock. Because of the simplicity of the piecewise constant structure, the 
square wave lies a t  the heart of the wave-interaction instability mechanism that was 
proposed by McVey & Toong (1971) and Alpert & Toong (1972). Also the large 
ac,tivation energy limit has been used in the previous analytical works and derives 
the square wave structure in a rigorous limit. 

Figures 9(a)-9(c)  show the results of varying the activation energy and the 
movement of roots in the first quadrant of the complex a-plane for the parameters 
y = 1.2, Q = 10, f = 2. These figures differ only in that the scaling used to plot the 
results are different. The different timescales used have their origin in the 
characteristic times defined by the properties of the explosive and the steady 
solution ; namely an inverse reaction time defined by the explosive independent of 
the steady solution 4 corresponding to E l & ,  the inverse reaction time at  the steady 
shock corresponding to a and the inverse reaction time at  the end of the reaction zone 
corresponding to a/( -rpoh). 

Figure 9 (a )  plots ai/( - r?) versus ar/( - rpoh), which is how the complex growth rate 
naturally appears in the radiation condition and scales the complex, dimensional 
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FIGURE 9. (a) The migration of multiple roots in the complex plane (-a,/.?), ( -ai/r?) a# E is 
varied. y = 1.2, Q = 10 andf = 2, N = 2000. Each migration curve shown consists of approximately 
200 roots. No branches lie below the lowest solid curve. Other branches above the uppermost exist 
for higher-activation energy but are not shown. (b) Migration of multiple roots in the complex plane 
(di , /k,&,/k) as E is varied. y = 1.2, Q = 10, f =  2. (c) Migration of multiple roots in the complex 
plane (a,,a,) as E is varied. y = 1.2, Q = 10, f= 2. 

growth rate by the inverse reaction time at  the end of the reaction zone. Our 
calculations found these ratios directly as the roots and we found that their use 
effectively scaled the state dependence as E was increased, making our calculation 
numerically well-conditioned. The region of the search was defined by czJ( -rp",) E [0, 
0.041 and ail( --~p",) E [0,1.0]. 

For the activation energy E = 35, a total of 3 unstable roots were found, which 
represents all of the unstable modes. As the activation energy was increased, more 
unstable roots appeared in our search window. As the activation energy was 
increased further, even more unstable roots appeared. It became cornputationally 
prohibitive to determine all of the high-frequency roots in our search window for the 
higher activation energies and we limited our computations. For example, for 
E = 35, the number of unstable roots is 3, for E = 40, 6, for E = 45, 12, for E = 50, 
21 and for E = 60, the number is greater than 50! Our results suggest that as the 
activation energy is increased even further than we have shown, additional high- 
frequency instabilities appear. We speculate that the number of unstable roots 
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increases indefinitely with increasing activation energy. Indeed this feature alone 
shows how pathological the large activation energy instability is and suggests that 
tremendous care is needed in nonlinear numerical simulations as a direct 
consequence. This finding also confirms some aspects of previous work on the 
spectrum of the square wave detonation, which we will return to. 

While figure 9 ( a )  demonstrates the computational efficacy of this scaling, the 
physical interpretation of the behaviour of the discrete unstable spectrum is not 
transparent as E becomes larger. Figure 9(b )  shows the same results where the 
frequencies are scaled by the inverse timescale 5, which is completely independent of 
the dimensional activation energy. A striking conclusion from this figure is that at 
larger activation energies, the unstable spectrum, growth rates and frequencies 
decrease exponentially. A physical reason for this is that as the activation energy 
increases, the induction time and corresponding induction length increase 
exponentially. Consequently any instability mechanism that is associated with the 
round trip traversal of acoustic waves between the shock and reaction zone takes an 
infinitely long time to occur. For E = 00, the shocked material does not react and the 
system has the stability of the step shock, which in this case is neutrally stable. 

(which is proportional to the 
induction time for large activation energy) as the scaling and yields another 
interesting physical interpretation. Note that once an unstable mode is present, its 
growth rate changes with increasing activation energy, but its frequency is nearly 
constant. Also the change in frequency plotted versus mode number was found to be 
nearly constant as the activation energy is increased a t  increments of &t", of about 1.4. 
Thus our results suggest that the fundamental period of instability is proportional to 
the induction time and shows clearly that the unstable higher-frequency modes are 
essentially integer multiples of the lowest frequency, as might be expected. This 
theoretical observation is consistent with the experimental correlations of McVey & 
Toong and Alpert & Toong. 

McVey & Toong and Alpert & Toong gave a physical interpretation of the 
longitudinal instability based on the implicit assumption of the square wave 
structure. They suggested that the instability mechanism is maintained by a cycle 
where a compressive acoustic disturbance reflects off the shock to create a thermal 
disturbance which is then carried on particle lines which shortens the induction time 
for reaction, causing a rapid acceleration of the fire. The accelerating fire creates 
compressive waves that propagate both towards the shock and into the burnt 
region, While the forward pulse is the origin of the original compressive wave that 
starts the cycIe, the back facing pulse becomes a relatively strong rarefaction that 
later serves to  weaken the leading shock. The fire continues accelerating towards the 
shock until such time that the rarefaction from the previous cycle weakens the shock 
and increases the induction time. One important conclusion of their work is that this 
mechanism of instability must occur on the scale of the induction time. Our results 
shown in figure 9 ( c )  demonstrate this correlation convincingly for reasonably large 
activation energy and from the point of view of the linear acoustics of stability 
theory, confirm a reflection mechanism. 

Our numerical results seem consistent with some aspects of the previous analyses 
of the square wave detonation. Analyses of the square wave model by Erpenbeck 
(1963), Fickett (1985) and Buckmaster & Nevis (1988), all share the common 
pathology in the description of the unstable spectrum in that the most unstable roots 
occur a t  high (infinite) frequency. Our results show, at least for moderate activation 
energy, that the spectrum has a maximum growth rate and then stabilizes a t  higher 

Figure 9(c )  shows the spectral results using 

5-2 
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FIGURE 10. Comparison of the unstable spectra calculated by Abouseif & Toong, Buckmaster & 
Nevis and the present work for y = 1.2, E = Q = 50 a n d f =  1.0, 1.2, 1.4 and 1.6. The results are 
shown in units of half-reaction time as defined by Abouseif & Toong. -, results of this paper. 
___ , Buckmaster & Nevis. ---, Abouseif & Toong. 

frequency. This result was speculated on by Buckmaster & Nevis, suggesting that the 
square wave results are incomplete. Our numerical results also show that, a t  the 
highest activation energies that we computed with (e.g. E = 60), a t  low frequencies, 
the growth rates of the spectrum grow with increasing frequency. At higher 
frequencies (even for E = 60) the growth rates decrease with increasing frequencies. 

It is likely that the square wave analyses are properly identifying the lower- 
frequency portion of the spectrum but not the higher-frequency portion. The 
theoretical reason for this deficiency is clear ; all these analyses have not considered 
the complete structure of the reaction zone. Very high-frequency disturbances are 
likely to originate from the passage of the acoustic waves through the extremely thin 
reaction (fire) zone. I n  contrast, our stability formulation is in terms of the reaction 
coordinate and the entire structure is treated with no approximations. 

The studies by Abouseif & Toong and Buckmaster & Nevis give explicit results for 
the spectrum such that a comparison can be made with our results. This is shown in 
figure 10 and table 1 for y = 1.2, Q = E = 50, with f= 1.0, 1.2, 1.4 and 1.6. All 
resear'chers used slightly different dimensional scalings. Abouseif & Toong define the 
timescale as the steady half-reaction time, r; and the lengthscale by C0 4. Buckmaster 
& Nevis define the lengthscale by an asymptotic expression for the induction length 
L" and the timescale by L"/Es. Likewise we have defined the lengthscale by the steady 
half-reaction length I, (which becomes commensurate with L" as E +  co) and the 
timescale as &/Es.  Appendix B gives the formulae for conversion of scales. 

Abouseif & Toong gave an approximate but non-rigorous calculation for the 
spectrum based on activation-energy asymptotics but applied for finite activation 
energies. Quoting Buckmaster & Nevis, 'But in addition, the approximations that 
are a t  the heart of the calculations of Abouseif and Toong, raise serious doubts about 
the accuracy of their results. It is sufficient to  consider one of the approximations. 
Instead of solving the exact linearized equations with coefficients defined by the 
exact steady solution, they linearize all nonchemical terms about the steady 
postshock state. Thus all nonchemical terms have constant coefficients.. . . These 
cannot be valid within the fire or the burnt gas and i t  is difficult to assess the effect 
of their approximations on the final results. Clearly there is a need for numerical 
calculation without extrarational approximation.' 
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Lee & 
Stewart 

(N= 2000) 

f n  
1 1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1.2 1 
2 
3 
4 
5 
6 

1.4 1 
2 
3 
4 
5 

1.6 1 
2 
3 
4 
5 

1.731 1 

a T r  

1.857 
1.879 
1.888 
1.785 
1.634 
1.434 
1.214 
0.973 
0.721 
0.459 
0.189 

0.569 
1.148 
0.933 
0.550 
0.095 

0.313 
0.504 

-0.088 

-0.400 

-0.041 
-0.763 
- 1.540 

0.112 
-0.076 
-0.952 
- 1.966 
-2.790 

0.000 

aTi 

0.000 
4.372 
8.333 

12.16 
15.96 
19.74 
23.53 
27.31 
31.09 
34.87 
38.65 
42.43 

0.300 
4.547 
8.234 

11.84 
15.44 
19.03 

0.664 
4.484 
7.913 

11.29 
14.64 

0.789 
4.314 
7.472 

10.58 
13.48 

0.825 

Nonlinear 
simulation 
(Abouseif & 
Toong and Abouseif 
Fickett & & Toong 

Wood) 
a T r  

2.24 
1.99 
1.76 
1.58 
1.39 
1.12 
0.76 
- 

- 

- 
- 

- 

I .40 
1.07 
0.66 

-0.20 
- 

- 

0.84 
0.36 

-0.38 
- 

- 

0.372 
-0.132 
-0.646 
- 
- 

- 

aTi 

1.31 
4.16 
7.2 

10.28 
13.35 
16.40 
19.35 
- 

- 
- 

- 

- 

1.21 
4.02 
7.00 

11.64 
- 

- 

1.04 
3.82 
6.52 
- 
- 

1 .oo 
3.4 
6.4 
- 

- 

- 

Buckmaster 
& Nevis 

a T r  

- 

- 

- 

- 
- 
- 

- 

- 
- 

- 

- 
- 

2.71 
3.72 
4.11 
4.48 
4.69 
- 

2.80 
3.83 
4.23 
4.61 
4.84 

2.82 
3.85 
4.25 
4.62 
4.86 
- 

aT1 

- 
- 
- 

- 

- 

- 

__ 
- 

- 

- 

- 

- 

3.95 
10.6 
16.8 
23.2 
29.3 
- 

4.03 
10.9 
17.2 
23.7 
30.0 

10.9 
17.2 
23.7 
30.0 

4.03 

- 

TABLE 1. Comparison of the unstable spectrum between Lee & Stewart, Abouseif & Toong, 
Buckmaster & Nevis, and the simulations of Fickett & Wood. y = 1.2, Q = 50, E = 50. n is the mode 
number. aT is the complex frequency scaled with the half-reaction time. 

Abouseif & Toong’s approximate spectrum does not agree with the exact result. 
Their growth rates and higher frequencies are overpredicted. Contrary to our results 
they show the maximum growth rate always occurs at the fundamental (lowest) 
frequency. Their results are surely affected by their ad hoc approximations and the 
truncation of terms in their stability calculations. 

The results of Buckmaster & Nevis are asymptotically derived in the limit of large 
activation energy and their leading-order estimates of the frequencies and growth 
rates are shown for finite activation energy in figure 10 for comparison. While only 
5 eigenvalues are given, they, in principle, calculate an infinite number. The 
quantitative comparison of their results with ours and Abouseif & Toong’s results is 
poor for E = 50. And they show an opposite trend of increasing instability as the 
overdrive factor, f, is increased. However it is not clear that E = 50 is large enough 
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to expect their results to agree quantitatively, although on a physical basis E = 50 
is a large activation energy. Also, for Q = E = 50 the exact steady state structure 
does not look like a square wave. There is theoretical reason to suspect their result 
which is given below. 

In  their analysis they treat only the induction zone with slight reaction. The 
acoustic equations in the induction zone are solved subject to the linearized shock 
conditions and a homogeneous boundary condition that the temperature per- 
turbation is zero a t  the end of the induction zone. The rationale for this last condition 
is to ensure a regular solution of the perturbations as the end of the induction zone 
is approached. In  doing this they derive the spectral results shown. 

They do not attempt to  solve for the complete eigenfunction through the induction 
zone, fire, to the end of the equilibrium zone where the radiation condition 
(4.26)-(4.27) must apply. Stewart & Kapila have made some preliminary calculations 
on the large activation energy limit, with the complete formulation of the singular 
eigenvalue problem given here. These calculations show the eigenfunctions to obey 
the same equations as Buckmaster & Nevis in the induction zone, however, in order 
to match with the solutions in the fire zone, a stronger condition on the eigenfunctions 
must hold a t  the end of the induction zone; namely that both the pressure and 
density perturbations vanish. This stronger condition is consistent with the vanishing 
of the temperature as Buckmaster & Nevis assumed, but it means that their stability 
problem, confined only to the induction zone would be overdetermined. Of course 
this stronger condition presents no difficulty when properly viewed as a statement 
about the structure of the eigenfunctions and as a matching condition for the 
continuation of the eigenfunctions through the reaction zone. 

It may turn out that  the Buckmaster & Nevis estimate of the spectrum for 
E + co is correct and describes only the lower-frequency portion of the spectrum. If 
this is the case, then tremendously large values of E ,  larger than used in this study, 
are required to make a quantitative comparison. 

A fair amount of effort has been expended in comparison of results of linear 
stability to the isolated case of y = 1.2, Q = E = 50 andf = 1.6. The value off = 1.6 
is extremely close to the neutral stability boundary. Indeed our calculations show 
that the neutrally stable value off is 1.731 with ii{ = 0.825 corresponding to an 
oscillation period of the fundamental mode of 7.616, measured in steady half- 
reaction times. Large amplitude simulations of Fickett & Wood and later ones by 
Abouseif & Toong have a low-frequency oscillation of about 8 half-reaction times. 
Close inspection of these simulations shows variations of the period measured 
between peaks of the pressure oscillation to be approximately 10%. Abouseif & 
Toong report that they found that both ‘the amplification rate and the amplitude of 
oscillation were slightly dependent on the step size used in numerical calculation ’. 
Unfortunately no details are given. During the revision of this paper, the results of 
new numerical simulations using front tracking of the lead shock and the piecewise 
parabolic method (PPM) were carried out by Bourlioux, Majda & Roytburd (1989) 
which found the transition to instability a t  f = 1.731. Indeed they used the method 
and formulation of this paper to calculate the growth rates, frequencies and 
eigenfunctions and made comparisons with the nonlinear simulations and found 
excellent agreement. 

I n  summary, our lowest-frequency linear stability results are in rough agreement 
with those observed in the nonlinear simulation reported by Fickett & Wood and 
Abouseif & Toong at large disturbance amplitudes and in exact agreement with the 
recent work near the stability boundary done by Bourlioux & Majda. 
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FIGURE 11. The unstable spectra for y = 1.2, Q = 50, E = 10 and forf=  1.2, 1.6, 2.0 and 2.4. 

6.4. Other results 
A general study of the migration of the unstable spectrum for large but finite 
activation energy (as well as for other parameters) is computationally intensive 
because of the stiff nature of the governing equations. For example, figure 9 required 
approximately 5 hours of CPU time on a CRAY XMP-48 computer to generate it. All 
of the roots were not determined at the higher frequencies owing to our 
computational restrictions. Thus a study at truly large but finite activation energy 
is still incomplete and likely to be difficult. For example, we have made no attempt 
to study methodically the frequency of the most unstable growth rate in parameter 
space. The interesting question of how the spectrum varies with the other parameters 
such as y ,  & andfis as yet incomplete. Completion may require alternative numerical 
methods to be applied to this problem. At the time of this writing we are aware of 
an independent effort to examine this difficult question at large but finite activation 
energies by LaidSchmidt and coworkers by means of collocation schemes (private 
communication). 

Results of another migration study are shown in figure 11, for y = 1.2, & = 10, 
E = 50 withf= 1.2, 1.6, 2.0 and 2.4, which complements figure 10. The results show 
that as the overdrive factor is increased, stability is achieved and the most unstable 
modes are a t  the lowest frequencies. Thus the effect of changing E is opposite to 
changing f, since as E is lowered, instability is suppressed and the lower-frequency 
modes tend to be the most unstable. 

Finally, as an experiment, we decided to require that the velocity perturbation be 
zero at the end of the steady reaction zone, u' = 0, replacing the radiation condition 
(4.26)-(4.27), to test the sensitivity of our computed stability results to the rear 
boundary condition. This condition mimics a constant-velocity piston supporting 
the flow. Comparison of the neutral stability curves obtained for the radiation 
condition and the zero perturbation particle velocity condition is shown in a portion 
of the (f, &)-plane for fixed y = 1.2, E = 50 in figure 12 for the lowest-frequency 
mode. In  the range shown there is a t  most a 10% difference in the results. 
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FIQURE 12. Comparison of the neutral stability curves obtained for the radiation condition and a 
zero perturbation particle velocity applied at the piston. The results are shown in a (&,f)-plane for 
fixed y = 1.2, E = 50. In  the range shown there is a t  most a 10% difference in the results. 

7. Future work 
We have presented a direct normal mode approach to  the detonation stability 

problem which greatly simplifies the formulation and the calculation of linear 
instability of detonation. This method directly calculates the dispersion relation and 
unstable eigenfunctions. I n  this paper we have limited the discussion to one- 
dimensional instability. Multidimensional instability is treated by exactly the same 
methodology since consideration of transverse disturbances only introduces an 
additional parameter E (say) which corresponds to the square root of the sum of the 
squares of the transverse wavenumbers. We will report on these results in a sequel. 

Our method may be able to treat the stability of more complex systems with 
regard to changes in the equation of state and the kinetics of the reaction driving the 
detonation. The normal mode approach and the use of the shooting method or its 
equivalent is, in principal, capable of being generalized to equations of state and 
kinetic schemes of the form 

I n  particular, the state vector z is increased in length by N -  1 with the addition of 
equations (7.1 b).  However the general question as to the nature of the rear boundary 
condition in the equilibrium zone must be resolved for these general schemes. 

Finally, we point out that even though our scheme is direct and easy to implement, 
complete investigation of the various regions of parameter space is computationally 
intensive. Any equivalent or more efficient numerical method for computation of 
detonation should be considered a valuable contribution and such approaches are 
needed to further explore the parameter regimes of instability. 
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Appendix A. Definition off  and fa 

the scaling matrix S. Thus we find that 
The quantities S,, S, and S3 are defined as the first three terms on the diagonal of 

Appendix B. Conversion of timeschles 
Using the definitions of the timescales and lengthscales given in Buckmaster & 

Nevis (1988) and Abouseif & Toong (1982), the following conversion formulae are 
derived. The subscript B, refers to Buckmaster & Nevis. The subscript T refers to 
Abouseif & Toong. 

[(l-s)-’exp (O/(p*v*))ds 

[u*(l -s)-lexp (O/(p*v*)) ds’ 
aT/a = (B 1) 
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